Chem. Ber. 113, 221-225 (1980)

Photoelektronenspektren und Konformationsverhalten von 1,3,4-Oxadiazolidinen

Maria Förterer und Paul Rademacher*

Fachbereich Chemie der Universität Essen-GHS, Universitätsstr. 5, D-4300 Essen 1

Eingegangen am 2. April 1979

Die PE-Spektren der 1,3,4-Oxadiazolidine 1-5 wurden hinsichtlich der in der Gasphase vorliegenden Konformeren ausgewertet. Das Aufspaltungsmuster der n-Ionisationsbanden legt für die N,N'-disubstituierten Verbindungen 1-4 diaxiale und für das Tetramethylderivat 5 tetraäquatoriale Substituentenlagen nahe, wobei der Fünfring die Halbsesselkonformation besitzt.

Photoelectron Spectra and Conformations of 1,3,4-Oxadiazolidines

The PE spectra of the 1,3,4-oxadiazolidines 1-5 have been interpreted with regard to gas phase conformations. From the n-ionization potentials diaxial conformations have been identified for the N,N'-disubstituted compounds 1-4, and a tetraequatorial form was found for the tetramethyl derivative 5. The five-membered ring of 1-5 adopts the halfchair conformation.

Die Photoelektronenspektroskopie ist hervorragend zur Konformationsanalyse von Verbindungen mit vicinalen einsamen Elektronenpaaren geeignet ^{1, 2)} und wurde bereits erfolgreich auf aliphatische Fünfring-Heterocyclen wie Pyrazolidine ^{3, 4)}, Isoxazolidine ⁵⁾, Thiazolidine ⁶⁾ sowie Di- und Trioxolane ⁷⁻⁹⁾ und -thiolane ¹⁰⁾ angewendet. Wir berichten hier über unsere Untersuchungen an den 1,3,4-Oxadiazolidinen 1–5.

Ergebnisse

Die PE-Spektren von 1-5 zeigen im vorderen Bereich drei Ionisationsbanden, die den beiden einsamen Elektronenpaaren der Stickstoffatome, n(N), und dem n_{π}(O) des Sauerstoffatoms entstammen. Die gemessenen Ionisationspotentiale sind in der Tabelle zusammengestellt.

ϕ und δ (°) der 1,3,4-Oxadiazolidine 1–5							
	<i>I</i> _v (n _)	$I_{\mathbf{v}}(\mathbf{n}_{+})$	$I_{\rm v}({\rm n_O})$	$\Delta^{\mathrm{a})}$	φ ^{b)}	фъ)	δ ^{ь)}
1	9.05	9.46	10.04	0.41	75	45	165
2	8.78	9.32	9.91	0.54	72	48	168
3	8.55	9.20	9.86	0.65	69	51	171
4	8.22	9.03	9.73	0.81	64	56	176
5	10 .10	8.37	9.38	-1.73	136	16	104

Tab.: Vertikale Ionisationspotentiale I_v (eV), Bandenaufspaltungen Δ (eV) und Torsionswinkel φ , φ und δ (°) der 1,3,4-Oxadiazolidine 1-5

^{a)} $\Delta = I_v(n_+) - I_v(n_-)$. - ^{b)} Berechnet nach Gl. (1), (2) bzw. (3).

© Verlag Chemie, GmbH, D-6940 Weinheim, 1980

Nach den bisherigen Struktur-Befunden für ähnliche Verbindungen (s. unten) ist anzunehmen, daß der 1,3,4-Oxadiazolidin-Ring in der Halbsesselform mit C_2 -Symmetrie vorliegt. Das $n_{\pi}(O)$ -Orbital gehört dann zur Symmetrierasse B, und die Linearkombinationen der beiden n(N)-Orbitale

$$n_{+} = (n(N_{1}) + n(N_{2}))/1/2$$
 und
 $n_{-} = (n(N_{1}) - n(N_{2}))/1/2$

besitzen A- bzw. B-Symmetrie. Die Wechselwirkung zwischen $n(N_1)$ und $n(N_2)$ und damit die Aufspaltung Δ von n₊ und n₋ läßt sich nach der Beziehung (1) mit dem Torsionswinkel $\varphi = \not : -N - N - :$ korrelieren²⁾.

$$\Delta = 2.20 \cos \varphi - 0.15 \ (eV) \tag{1}$$

Nach NMR-Untersuchungen von *Katritzky* et al.^{11,12)} können die Substituenten R der Stickstoffatome entweder diaxial (Konformation A) oder diäquatorial (Konformation B) angeordnet sein. Der *cis*-Form C entsprechende äquatorial-axiale Konformere dürften wesentlich instabiler sein.

Näherungswerte des Ringtorsionswinkels $\phi = \measuredangle C - N - N - C$ und des Interplanarwinkels zwischen dem Substituenten $\delta = \measuredangle R - N - N - R$ ergeben sich nach Gl. (2) und (3).

$$\phi \approx 120^{\circ} - \phi$$
 (A) bzw. $\phi - 120^{\circ}$ (B) (2)

$$\delta \approx 240^{\circ} - \phi \tag{3}$$

Da n₋ und n_{π}(O) gleiche Symmetrie besitzen, ist bei der Ermittlung von φ aus Δ nach Gl. (1) der Einfluß der Wechselwirkung dieser beiden Orbitale zu berücksichtigen. Allerdings sollten diese Effekte wesentlich kleiner als die direkte Wechselwirkung zwischen n(N₁) und n(N₂) sein.

3,4-Dimethyl-1,3,4-oxadiazolidin (1)

Die in der Tabelle angegebene Zuordnung¹³⁾ der Ionisationspotentiale zu den drei n-Orbitalen läßt sich am Beispiel von 1 wie folgt begründen:

Wie ein Vergleich der π -Ionisationspotentiale von Cyclohexen¹⁴⁾ (6) und 1,2-Dimethyl-1,2,3,6-tetrahydropyridazin⁴⁾ (7) zeigt, bewirkt eine allylische 1,2-Dimethylhydrazingruppe eine Stabilisierung von 0.35 eV. Ausgehend von Tetrahydrofuran (8) $(n_{\pi}(O) = 9.57 \text{ eV})^{15}$ ist daher für 1 ein n(O)-Ionisationspotential von ca. 9.9 eV zu erwarten und dementsprechend die bei 10.04 eV gefundene Bande diesem Orbital zuzuordnen. Damit verbleiben die Banden 9.05 und 9.46 eV für die beiden n(N)-Orbitale. Aus der Aufspaltung $\Delta = 0.41$ eV ergibt sich nach (1) ein Wert von 75° für φ , der sehr gut zur Konformation A paßt.

1,2-Dimethylpyrazolidin (9) bildet in der Gasphase ein 1:3-Gemisch aus A und B mit $\varphi = 67$ bzw. $160^{\circ 4}$. Die Absenkung des Bandenschwerpunktes der beiden n(N)-Ionisationsbanden von 1 (9.26 eV) gegenüber demjenigen des A-Konformeren von 9 (8.70 eV) um 0.56 eV ist auf die induktive Stabilisierung durch den allylischen Sauerstoff zurückzuführen.

Nach Gl. (2) erhält man für den Ringtorsionswinkel ϕ von 1 einen Wert von 45°. Für den entsprechenden Winkel des Pyrazolidins wurden bei einer Strukturanalyse¹⁶⁾ 46 ± 5° gefunden. 1,2,4-Trioxolan (Ethylenozonid) besitzt einen O-O-Torsionswinkel von 50°^{17,18}) und 1,2,4-Trithiolan einen S-S-Torsionswinkel von ca. 40°¹⁰).

Daß bei 1 offensichtlich im Gegensatz zu 9 das Konformere A stabiler ist als B, dürfte auf elektrostatische Effekte (niedrigeres Dipolmoment) und eine Stabilisierung durch $n(N)/\sigma^*(C-O)$ -Wechselwirkung¹⁹⁾ zurückzuführen sein. Letztere besitzt wegen der *anti*-Stellung der beteiligten Orbitale in A einen größeren Wert als in B.

3,4-Dialkyl-1,3,4-oxadiazolidine 2-4

Die N,N'-Dialkylverbindungen **2**-4 zeigen mit der Substituentengröße kontinuierlich abfallende Ionisationspotentiale (Tabelle). Dabei ist der Effekt erwartungsgemäß bei den n(O)-Banden kleiner als bei den n(N)-Ionisationen. Die Aufspaltung Δ von n₊ und n₋ nimmt ebenfalls mit der Größe von R zu, und nach Gl. (1) resultiert z. B. für 4 ein Torsionswinkel $\varphi = 64^{\circ}$, der um 11° kleiner ist als bei 1. Die sich nach Gl. (3) ergebende Zunahme des Interplanarwinkels δ zwischen den Substituenten muß infolge zunehmender sterischer Abstoßung plausibel erscheinen. Für den Ringtorsionswinkel φ von 4 erhält man allerdings einen unrealistisch großen Wert (56°). Hier ist anzunehmen, daß Gl. (2) bei großen Substituenten wegen der sicherlich stärkeren Abweichungen der N-Atome von der idealen sp³-Konfiguration zu größeren Fehlern führt.

2,3,4,5-Tetramethyl-1,3,4-oxadiazolidin (5)

Das PE-Spektrum von 5 zeigt ein deutlich von 1-4 verschiedenes Aufspaltungsmuster der n-Ionisationsbanden, das auf eine andere Konformation hindeutet. Für den Übergang von 1 nach 5 ist infolge des destabilisierenden induktiven Effekts der beiden zusätzlichen Methylgruppen eine deutliche Anhebung aller n-Orbitale zu erwarten. Dementsprechend kann das dritte Ionisationspotential von 5, das mit 10.10 eV etwas größer ist als bei 1 (10.04 eV), nicht dem n_n(O)-Orbital zugeordnet werden. Damit folgt die in der Tabelle angegebene Zuordnung mit einer wesentlich größeren (negativen) Aufspaltung Δ von n_+ und $n_-^{2)}$. Daraus ergeben sich nach Gl. (1)–(3) Torsionswinkel $\varphi = 136^\circ$, $\varphi = 16^\circ$ und $\delta = 104^\circ$, die für **5** die **B**-Form anzeigen. Bei der Ableitung dieser Winkel ist jedoch noch folgendes zu beachten:

In **B** stehen die beiden n(N)-Orbitale axial und können demnach wesentlich besser mit den vicinalen *anti*-axialen C-H-Bindungen sowie mit $n_{\pi}(O)$ wechselwirken. Dies bedingt eine stärkere gegenseitige "Abstoßung" von n_ und $n_{\pi}(O)$ bei **B**, die infolge ihres geringeren Energieunterschiedes bei **5** noch verstärkt wird²⁰. Der für **5** in der Tabelle angegebene Wert von Δ dürfte daher betragsmäßig den oberen Grenzwert der $n(N_1)/n(N_2)$ -Wechselwirkung darstellen. Dementsprechend dürften φ und φ tatsächlich noch kleinere Werte besitzen.

Modellstudien zeigen, daß die Methylgruppen an C-2 und C-5 ebenfalls äquatorial angeordnet sein müssen, da sonst starke sterische Wechselwirkungen zwischen benachbarten *cis*-ständigen Methylgruppen auftreten würden. Diese tetraäquatoriale Lage der Methylgruppen bedingt wahrscheinlich eine Einebnung des Fünfringes und damit die starke Abnahme von ϕ .

Frau M. Wildemann und Herrn W. Sonntag danken wir für die Aufnahme einiger PE-Spektren, Herrn R. Poppek für präparative Arbeiten. Der Deutschen Forschungsgemeinschaft sei für die finanzielle Unterstützung dieser Untersuchungen gedankt.

Experimenteller Teil

Zur Aufnahme der PE-Spektren²¹⁾ diente ein Photoelektronenspektrometer PS 16 der Fa. Perkin-Elmer. Die sorgfältig getrockneten und entgasten Substanzen wurden bei Raumtemp. über ein Nadelventil in die Ionisationskammer eingelassen, so daß dort ein Substanzdruck von 50-100 mTorr herrschte. Die Eichung der Spektren erfolgte mit einem Argon/Xenon-Gemisch als innerem Standard. Die Genauigkeit der gemessenen Ionisationspotentiale beträgt etwa ± 0.05 eV.

Sämtliche Substanzen wurden mit einem Gaschromatographen, Modell 920, der Firma Varian-Aerograph an Carbowax 20M mit 5% KOH bei Temperaturen um 20°C unterhalb ihres Siedepunktes gereinigt. Die bereits in der Literatur beschriebenen Verbindungen wurden anhand ihrer physikalischen Konstanten sowie ihrer IR- und NMR-Spektren charakterisiert.

Die Verbindungen 1-4 wurden durch Kondensation der entsprechenden 1,2-Dialkylhydrazine^{22, 23)} mit Formaldehyd erhalten^{12, 24)}, **5** durch Kondensation von 1,2-Dimethylhydrazin mit Acetaldehyd^{22, 25)}.

Literatur

- ¹⁾ S. F. Nelsen und J. M. Buschek, J. Am. Chem. Soc. 95, 2011 (1973).
- ²⁾ P. Rademacher, Angew. Chem. 85, 410 (1973); Angew. Chem., Int. Ed. Engl. 12, 408 (1973); Chem. Ber. 108, 1548 (1975).
- ³⁾ S. F. Nelsen und J. M. Buschek, J. Am. Chem. Soc. 96, 6987 (1974).
- 4) P. Rademacher und H. Koopmann, Chem. Ber. 108, 1557 (1975).
- ⁵⁾ P. Rademacher und B. Freckmann, Tetrahedron Lett. 1978, 841.
- ⁶⁾ C. Guimon, G. Pfister-Guillouzo und J.-L. Larice, J. Chim. Phys. 74, 1099 (1977).
- ⁷⁾ Chr. Batich und W. Adam, Tetrahedron Lett. 1974, 1467.
- ⁸⁾ R. S. Braun und R. W. Marcinko, J. Am. Chem. Soc. 100, 5584 (1978); und dort zitierte Literatur.
- ⁹⁾ P. Rademacher und W. Elling, Liebigs Ann. Chem. (im Druck).
- ¹⁰⁾ M.-F. Guimon, C. Guimon und G. Pfister-Guillouzo, Tetrahedron Lett. 1975, 441.

- ¹¹⁾ V. J. Baker, A. R. Katritzky, J.-P. Majoral, S. F. Nelsen und P. J. Hintz, J. Chem. Soc., Chem. Commun. 1974, 823.
- ¹²⁾ V. J. Baker, A. R. Katritzky und J.-P. Majoral, J. Chem. Soc., Perkin Trans. 2 1975, 1191.
- ¹³⁾ T. Koopmans, Physica 1, 104 (1934).
- ¹⁴⁾ P. Bischof, J. A. Hashmall, E. Heilbronner und V. Hornung, Helv. Chim. Acta 52, 1745 (1969).
- ¹⁵⁾ A. D. Bain, J. C. Bünzli, D. C. Frost und L. Weiler, J. Am. Chem. Soc. 95, 291 (1973).
- ¹⁶⁾ H. Koopmann und P. Rademacher, unveröffentlichte Ergebnisse.
- ¹⁷⁾ A. Almenningen, P. Kolsaker, H. M. Seip und T. Willadsen, Acta Chem. Scand. 23, 3398 (1969).
- ¹⁸⁾ C. W. Gilles und R. L. Kuczkowski, J. Am. Chem. Soc. 94, 6336 (1972); U. Mazur und R. L. Kuczkowski, J. Mol. Spectroscop. 65, 84 (1977).
- ¹⁹⁾ Siehe z. B. N. D. Epiotis, W. R. Cherry, S. Shaik, R. Yates und F. Bernardi, Structural Theory of Organic Chemistry, Topics in Current Chemistry, Bd. 70, Springer Verlag, Berlin-Heidelberg-New York 1977.
- ²⁰⁾ R. Hoffmann, Acc. Chem. Res. 4, 1 (1971).
- ²¹⁾ Auf die Abbildung der Spektren wurde verzichtet; sie werden Interessenten gern zur Verfügung gestellt.
- ²²⁾ E. Müller in Methoden der organischen Chemie (Houben-Weyl-Müller), 4. Aufl., Bd. X/2, S. 1ff., Thieme, Stuttgart 1967.
- ²³⁾ J. W. Timberlake und J. C. Stowell in S. Patai (Herausgeber), The chemistry of the hydrazo, azo, and azoxy groups, S. 69ff., Wiley, London-New York-Sydney-Toronto 1975.
- ²⁴⁾ G. Zinner, W. Kliegel, W. Ritter und H. Böhlke, Chem. Ber. 99, 1678 (1966).
- ²⁵⁾ B. Zwanenberg, W. E. Weening und J. Strating, Rec. Trav. Chim. Pays-Bas 83, 877 (1964).

[112/79]

225